New Triterpenes from Machaerocereus eruca

Yang Ye,[†] Kaoru Kinoshita,[†] Kiyotaka Koyama,[†] Kunio Takahashi,^{*,†} Norio Kondo,[‡] and Hiroshi Yuasa[‡]

Department of Pharmacognosy and Phytochemistry, Meiji College of Pharmacy, 1-22-1, Yato-cho, Tanashi-city, Tokyo 188, Japan, and Research Institute of Evolutionary Biology, 2-4-28, Kamiyoga, Setagaya-ku, Tokyo 142, Japan

Received July 29, 1997

Four triterpenes, three lupanes, and a germanicane were isolated from *Machaerocereus eruca*. The germanicane derivative (**1**) was determined to be 3β , 19α -dihydroxygermanican-28-oic acid and named machaeroceric acid. The three new lupane derivatives were identified as 21-ketobetulinic acid (**2**), 16β -hydroxybetulinic acid (**3**), and 22β -hydroxystellatogenin (**4**), respectively, on the basis of their spectroscopic data.

We have been interested in triterpenoids of cacti and previously isolated six known sapogenins, and 10 new ones, containing oleanane-type, lupane-type, and pachanan-type triterpenes, from the acid hydrolysates of methanol extracts of cactaceous plants.¹⁻⁴ Pachanols A, B, and C, which were new compounds posessing a new skeleton named pachanan, and bridgesigenin C, a new compound, were isolated from *T. pachanoi*.² Four known triterpenes, stellatogenin, betulinic acid, oleanolic acid, and thurberogenin, and a new compound, machaerogenin, were also isolated from Machaerocereus eruca Br. & R. (Cactaceae).⁴ Djerasii and co-workers⁵⁻⁷ discovered that M. eruca contained stellatogenin and betulinic acid in 1955. We now report four new triterpenes (1-4) and four known triterpenes, morolic acid, queretaroic acid, 27-desoxyphillyrigenin, and treleasegenic acid (3β -hydroxytaraxastan- $28,20\beta$ -olide) from the acid hydrolysate of a MeOH extract.

machaeroceric acid (1)

21-ketobetulinic acid (2)

16β-hydroxybetulinic acid (3)

22β-hydroxystellatogenin (4)

Results and Discussion

Four new triterpenes 1-4 were isolated from *M. eruca.* Compound 1 had molecular formula $C_{30}H_{50}O_4$

as determined by HREIMS and confirmed by ¹³C NMR and DEPT analysis. The IR spectrum of 1 exhibited hydroxyl (3437 cm⁻¹) and carboxyl (1710 cm⁻¹) absorptions. The ¹³C NMR spectrum revealed 30 carbon signals, which were assigned by DEPT as seven methyl, 10 methylene, four methine, two alcoholic methine, and seven quaternary (including a carboxyl) carbons. The ¹H NMR revealed seven singlet methyls, a doublet of doublets at δ 3.41, and a doublet at δ 4.65. Unambiguous assignments for the ¹H and ¹³C NMR signals were made by combination of the 1D difference homo-decoupling experiment, NOE difference spectra, ¹H⁻¹H COSY, HMBC, and HMQC. The ¹H and ¹³C NMR chemical shifts showed good agreement with similar data for the A/B ring of oleanolic acid, and 1 had one more hydroxyl group on the C/D/E ring. Compound 1 had no sp^2 carbons at positions 12 and 13. In ${}^{2}J$ and ${}^{3}J$ HMBC experiments, the alcoholic methine proton at δ 4.65 showed correlation with the methyl carbons at C-29 (δ 30.8) and C-30 (δ 21.0) and with the methine carbons at C-13 (δ 39.8) and C-18 (δ 46.4), respectively. These findings indicated a hydroxyl group at C-19. The stereochemistry of this alcoholic methine proton was determined by analyzing the NOE difference spectrum (Figure 1) and the value of coupling constant between H-18 and H-19. From the difference decoupling spectrum, irradiation at H-19 (δ 4.65), H-18 was assigned at δ 1.79 (t, J = 10.3 Hz). This indicated that the coupling constants of J_{18-19} and J_{18-13} were equal to 10.3 Hz. NOE enhancement of the H-13 (δ 2.92) proton was observed by irradiation of H-19 (δ 4.65) and CH₃-26 (δ 1.07), respectively. In addition, NOE enhancement was observed for H-18 and H-9, on irradiation of CH_3 -27 (δ 1.17). Thus, H-18 was shown to be in the α configuration. Furthermore, the alcoholic methine proton was determined to be in the β configuration from the vicinal coupling constant ($J_{18-19} = 10.3$ Hz). The ¹H and ¹³C NMR assignments at the 29 and 30 positions were made by NOE difference spectra. In the NOE difference spectra, enhancement of the methyl protons at δ 1.26 was observed by irradiation of H-19 (δ 4.65), and, in turn, NOE enhancement of this methine proton was observed by irradiation of the methyl protons. Moreover, on irradiation of the methyl protons at δ 1.24, NOE enhancement was observed at H-18 (δ 1.79) (Figure 1). The methyl protons at δ 1.24 and δ 1.26

© 1998 American Chemical Society and American Society of Pharmacognosy Published on Web 03/31/1998

^{*} To whom all correspondence should be addressed. Tel.: 0424-21-0394. Fax: 0424-21-1489.

[†] Meiji College of Pharmacy.

[‡] Research Institute of Evolutionary Biology.

Figure 1. Observed positive NOEs for **1** from NOE-difference spectra (indicated by arrows).

showed a cross peak in the HMQC spectrum at δ 21.0 and δ 30.8, respectively. Thus, the methyl protons and carbon signals at δ 1.24 and δ 30.8 were assigned to CH₃-29 and the methyl protons and carbon signals at δ 1.26 and δ 21.0 were assigned to CH₃-30 (Table 1). Therefore, the new compound **1** was determined to be 3β ,19 α -dihydroxygermanican-28-oic acid and was named machaeroceric acid.

Compound 2 had molecular formula C₃₀H₄₆O₄ as determined by HREIMS and confirmed by ¹³C NMR and DEPT analysis. The IR spectrum of 2 exhibited hydroxyl (3428 cm⁻¹), carboxyl (1700 cm⁻¹), and carbonyl (1744 cm⁻¹) absorptions. The ¹H NMR spectrum showed five tertiary methyls (δ 0.82–1.23, CH₃-23–27) and one vinylic methyl (δ 1.86, CH₃-30), two protons of an isopropenyl moiety at δ 5.05 and 5.07 (each 1H, s, CH₂-29) and one alcoholic methine proton at δ 3.46 (1H, dd, J = 8.9, 7.4 Hz, CH-3 β). The ¹³C NMR spectra of compound 2 revealed 30 carbon signals, which were assigned by DEPT as six methyl, nine methylene, five methine, five quaternary, one alcoholic methine, one carboxylic acid, and two olefinic (one $=CH_2$ and one quaternary) carbons. The $\Delta^{20,29}$ -functionality of a lupane skeleton was inferred for this compound from the resonances of the *sp*² carbons at C-29 (secondary carbon signal deduced by DEPT pulse sequence) at δ 114.4 and C-20 (quaternary carbon) at δ 144.9. The ¹H and ¹³C NMR (Table 1) confirmed the characteristic features for a betulinic acid parent structure bearing one carbonyl group on ring D or E for the compound. These assignments were performed by ¹H-¹³C COSY and long-range $^{1}\text{H}^{-13}\text{C}$ COSY experiments. The signal of CH₃-27 at δ 1.07 had a long-range ¹H-¹³C correlation peak with C-15. Methylene protons at C-15 and C-22 had same correlation peak with C-17, and the methylene protons at C-22 correlated with the carbon of the carbonyl group (δ 215.0). These data indicated that the carbonyl group was at C-21 or C-16. From the 1D homo-decoupling spectrum, however, the methylene protons were assigned to C-16 by irradiation of the methylene protons at C-15. Thus, the carbonyl group was placed at C-21. In comparison with ¹³C NMR data of betulinic acid, the carbons at C-19 and C-22 of $\mathbf{2}$ were deshielded (δ 49.7 → 59.0, $37.5 \rightarrow 52.0$), which supported the assignment of the carbonyl group at C-21. Therefore, the new compound was determined to be 21-ketobetulinic acid (2).

Compound **3** had the molecular formula $C_{30}H_{48}O_4$ as determined by HREIMS and confirmed by ¹³C NMR (Table 2) and DEPT analysis. The ¹H NMR spectrum

of **3** (Table 2), as in **2**, showed signals attributable to a betulinic acid derivative, except for the signal due to a proton attached to a carbon-bearing oxygen at δ 4.09. In comparison with the data of betulinic acid, the carbon signals for C-14, 15, 16, 17, and 18 appeared slightly or largely shifted downfield (42.8 \rightarrow 44.2, 31.2 \rightarrow 40.1, 32.8 \rightarrow 75.7, 56.6 \rightarrow 61.5, and 47.7 \rightarrow 49.4). These assignments were performed by 1D and 2D NMR. From the NOE difference spectrum, the hydroxy group was placed at C-16, and H-16 was shown to be in the α configration. Therefore, the structure of **3** was determined to be 16 β -hydroxybetulinic acid.

Compound 4 had molecular formula C₃₀H₄₈O₅ as determined by HREIMS and confirmed by ¹³C NMR and DEPT analysis. The IR spectrum indicated the presence of a hydroxyl (3457 cm⁻¹) and a five-membered lactone (1759 cm⁻¹). ¹H and ¹³C NMR of **4** (Table 2) confirmed the characteristic feature for the stellatogenin parent structure. In comparison with the NMR data of stellatogenin, the ¹³C NMR chemical shifts were in good agreement except for the D/E ring. The alcoholic methine proton (δ 5.23) had a long-range ¹H-¹³C correlation with the carbonyl carbon. Thus, this hydroxy group was either at C-16 or C-22. Because the ¹³C NMR data of **4** (Table 2) was not in agreement with that of 16β -hydroxystellatogenin,⁴ the hydroxyl group was assumed to be at C-22. A combination of 1D homodecoupling and 2D NMR allowed assignments of all protons and carbons. The stereochemistry of H-22 was determined to be α by analyzing the NOE difference spectrum. These facts indicated that **4** was 22β -hydroxystellatogenin.

Four known triterpenes were also isolated, and one of the four was identical with morolic acid, which was identified as the monoacetate derivative by comparing with published ¹³C NMR data and physical characteristics.⁸ Unambiguous assignments of ¹³C NMR signals were made by 2D NMR. The second known compound was identified as queretaroic acid by direct comparison with an authentic sample isolated from *T. bridgesii*.¹ The other two compounds were confirmed to be 27desoxyphillygenin $(3\beta$ -hydroxytaraxastan-28,20 β -olide)⁹ and treleasegenic acid,¹⁰ respectively. This is the first report of the isolation of morolic acid and 27-desoxyphillygenin from a cactus, and the first unambiguous assignments of ¹H and ¹³C NMR data for 27-desoxyphillygenin and treleasegenic acid are presented in the **Experimental Section.**

Four new compounds were isolated, and three of the four compounds (2, 3, and 4) were determined to be 21ketobetulinic acid, 16 β -hydroybetulinic acid, and 22 β hydroxystellatogenin, respectively. Compound 1 was determined to be 3β , 19α -dihydroxygermanican-28-oic acid and was named machaeroceric acid. The stereochemistry of 18-H in germanicanes is α in contrast to the β configuration in oleananes. Germanicane-type triterpenes reported earlier are characterized by the $\Delta^{18,19}$ olefinic linkage in their molecules,¹³ except for a few compounds having 18α-H.^{11,12} Olean-12-ene-type triterpenes are biosynthesized through germanicanetype triterpenes from lupane-type triterpenes, and the stereochemistry of 18-H in lupane-type triterpenes is α . Compound **1**, a germanicane derivative, does not have the $\Delta^{18,19}$ olefinic linkage but has the 18 α -H,

Table 1.	¹³ C and ¹ H	NMR Sp	ectral Data	of 1	and 2 in	C_5D_5N
----------	------------------------------------	--------	-------------	------	----------	-----------

	I		Z	
position	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$
1	39.1	0.85 (m), 1.53 (m)	39.2	0.99 (m), 1.67 (m)
2	28.3	1.78 (m)	28.3	1.86 (m)
3	78.0	3.41 (dd, J = 10.3, 5.7 Hz)	78.1	3.46 (dd, J = 8.9, 7.4 Hz)
4	39.5		39.5	
5	55.8	0.77 (m)	55.9	0.80 (d. $J = 9.1$ Hz)
6	18.8	1.54 (m)	18.7	1.47 (m), 1.58 (m)
7	34.9	1.39 (m)	34.5	1.40 (m)
8	41.4		41.2	
9	50.6	1.39 (d. $J = 12.6 \text{ Hz})^a$	50.6	1.70 (t. $J = 8.9$ Hz)
10	37.3		37.5	
11	21.9	1.54 (m)	20.9	1.35 (m)
12	28.8	1.78 (m), 2.95 (m)	26.3	1.29 (m), 1.75 (m)
13	39.9	2.92 (m)	38.8	2.53 (dt. $J = 12.1$, 3.6 Hz)
14	42.9		42.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
15	29.7	1.27 (m).	29.5	1.28 (m).
		1.97 (ddd. $J = 14.1.13.6.3.8$ Hz)		2.27 (dt. $J = 13.6, 3.7$ Hz)
16	35.5	1.63 (dt. $J = 13.1$, 3.8 Hz).	32.1	1.70 (m).
		2.41 (dt. $J = 13.1$, 4.0 Hz)		2.63 (ddd. $J = 12.9, 3.7, 2.5$ Hz)
17	52.3		50.8	, , , , , , , , , , , , , , , , , , , ,
18	46.5	1.79 (t, $J = 10.3 \text{ Hz})^a$	48.7	2.42 (t, $J = 12.1$ Hz)
19	75.9	4.65 (d, $J = 10.3$ Hz)	59.0	3.95 (d, $J = 12.1$ Hz)
20	37.6		144.9	
21	36.2	1.41 (m), 1.85 (m)	215.0	
22	34.4	1.75 (m). 2.05 (m)	52.0	2.45 (d. $J = 16.9$ Hz).
				2.92 (d, $J = 16.9$ Hz)
23	28.7	1.23 (s)	28.7	1.23 (s)
24	16.3	1.00 (s)	16.3	1.02 (s)
25	16.4	0.80 (s)	16.3	0.82 (s)
26	16.5	1.07 (s)	16.3	1.07 (s)
27	15.2	1.17 (s)	14.9	1.14 (s)
28	178.8	×-7	178.5	
29	21.0	1.24 (s)	114.4	5.04 (s), 5.06 (s)
30	30.8	1.26 (s)	21.5	1.86 (s)

^a Revealed by ¹H difference decoupling spectrum and NOE difference experiment.

supporting this concept of the biosynthesis of triterpenoids. The $\Delta^{18,19}$ germanicanes, such as morolic acid, may be intermediates to the oleananes.

Experimental Section

General Experimental Procedures. Melting points were determined on a Yanagimoto MP micromelting point apparatus. The IR spectra were measured with a JASCO A-102 IR spectrophotometer. The ¹H and ¹³C NMR spectra were recorded using a JEOL GSX-400 (¹H 400 and ¹³C 100 MHz) spectrometer in pyridine- d_5 . Chemical shifts are recorded in parts per million (δ) in pyridine- d_5 . The [α]_D values were determined with a JASCO DIP-140 digital polarimeter. Column chromatography was carried out on 70–230 mesh Si gel (Merck). HPLC was performed using an SSC-3100-J pump with an Oyo-Bunko Uvilog 7 UV detector. HRMS and EIMS spectra were obtained using a JEOL JMS-DX 302.

Plant Material. *M. eruca* Br. & R. (Cactaceae) was cultivated originally at the Research Institute of Evolutionary Biology (Setagaya-ku, Tokyo, Japan), Izu National History Park (Itoh, Shizuoka, Japan), and the Japan Cactus Planning Co. (Fukushima City, Fukushima, Japan). These cacti were identified by Drs. N. Kondo and H. Yuasa. A voucher specimen is deposited at the Research Institute of Evolutionary Biology.

Extraction and Isolation. Dry *M. eruca* was extracted with $CHCl_3$ and then repeatedly with MeOH. Extraction of the entire plant of *M. eruca* with MeOH was performed as described previously.⁴ The MeOH extract (17.9 g) was hydrolyzed with 3.5% HCl at 110

°C for 2.5 h. The CHCl₃-soluble fraction (4.41 g) was subjected to column chromatography on Si gel (CHCl₃– MeOH) and purified by HPLC over Si gel (Nucleosil 50– 5, 1×25 cm), eluted with CHCl₃–MeOH, resulting in the isolation of four new and four known triterpenes.

Machaeroceric acid (1): white amorphous powder (3.2 mg); mp 271–274 °C; [α] ²⁰ _D +5.98° (*c* 0.35, CHCl₃– MeOH 1:1); IR ν_{max} (KBr) cm⁻¹ 3437, 3125, 2934, 2868 (sh), 1710, 1692, 1642, 1462, 1385, 1261, 1100, 1036, 802; EIMS *m*/*z* (rel int %) 474 (M⁺, 47), 456 (44), 438 (35) 207 (100), 189 (92); HREIMS *m*/*z* 474.3714, calcd for C₃₀H₅₀O₄, 474.3708; ¹H and ¹³C NMR, see Table 1.

21-Ketobetulinic acid (2): white amorphous powder (15 mg); mp 214–217 °C; $[\alpha]^{20}_{D}$ +26.2° (*c* 0.53, CHCl₃– MeOH 1:1); IR ν_{max} (KBr) cm⁻¹ 3425, 2950, 2870 (sh), 1732, 1690, 1442, 1260, 1090, 1025, 800; EIMS *m*/*z* (rel int %) 470 (M⁺, 100); 452 (34), 437 (23), 207 (64), 189 (97); HREIMS *m*/*z* 470.3393, calcd for C₃₀H₄₆O₄, 470.3396; ¹H and ¹³C NMR, see Table 1.

16β-Hydroxybetulinic acid (3): white amorphous powder (30 mg); mp 271–274 °C; [α] 20 _D –14.3° (*c* 0.34, MeOH); IR ν_{max} (KBr) cm⁻¹ 3400, 2910, 1680, 1440, 1370, 1250, 1180, 1020, 880, 790; EIMS *m*/*z* (rel int %) 472 (M⁺, 20), 454 (76), 246 (44), 207 (81), 189 (100); HREIMS *m*/*z* 472.3552, calcd for C₃₀H₄₈O₄, 472.3553; ¹H and ¹³C NMR, see Table 2.

22β-Hydroxystellatogenin (4): white amorphous powder (6.3 mg), mp 296–298 °C; [α] 20 _D –10.0° (*c* 0.31, MeOH); IR ν_{max} (KBr) cm⁻¹ 3450, 2855, 1758, 1440, 1370, 1260, 110, 990, 800; EIMS *m*/*z* (rel int %) 488 (M⁺, 1), 470 (100), 427 (68), 205 (34), 189 (86); HREIMS *m*/*z*

Table 2.	¹³ C and ¹ H NM	R Spectral Data	of 3 and 4 in C_5D_5N
----------	---------------------------------------	-----------------	---------------------------------------

	3		4		
position	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	
1	39.3	0.80 (m), 1.66 (m)	39.2	0.99 (m), 1.60 (m)	
2	28.3	1.84 (m)	28.3	1.87 (m)	
3	78.0	3.45 (br t, $J = 8.1$ Hz)	78.1	3.45 (br t, $J = 7.9$ Hz)	
4	39.5		39.5		
5	55.9	0.80 (m)	55.8	0.80 (m)	
6	18.7	1.36 (m), 1.54 (m)	18.7	1.40 (m)	
7	34.8	1.42 (m)	34.9	1.43 (m)	
8	41.2		41.4		
9	50.5	1.28 (t, $J = 8.9$ Hz)	50.8	1.30 (m)	
10	37.5		37.5		
11	21.1	1.18 (m), 1.38 (m)	21.3	1.47 (m)	
12	25.6	1.15 (m), 1.91 (m)	28.0	1.31 (m), 1.56 (m)	
13	38.0	2.64 (m)	40.8	1.55 (m)	
14	44.2		43.4		
15	40.1	1.80 (m),	26.8	1.78 (m), ^a 2.82 (ddd, $J = 13.3, 13.1, 5.2$ Hz)	
		2.21 (t, $J = 12.2$ Hz)			
16	75.7	4.09 (dd, $J = 11.5$, 4.1 Hz)	22.3	1.20 (m), a	
				2.50 (dt, $J = 13.9, 5.2$ Hz)	
17	61.5		56.0		
18	49.4	1.80 (m)	39.7	2.35 (dd, $J = 11.9$, 6.0 Hz)	
19	48.1	3.52 (m)	54.2	2.00 (d, $J = 6.0$)	
20	150.5		69.3		
21	31.4		86.3	5.14 (br s)	
22	36.0	1.80 (m), 1.66 (m)	81.8	5.23 (br s)	
23	28.6	1.21 (s)	28.6	1.25 (s)	
24	16.3 (16.30)	1.01 (s)	16.5	1.15 (s)	
25	16.4 (16.36)	0.83 (s)	16.4	0.84 (s)	
26	16.4 (16.43)	1.13 (s)	16.4	1.03 (s)	
27	16.2	1.12 (s)	14.2	0.95 (s)	
28	177.7		179.5		
29	110.2	4.77 (s), 4.92 (s)	31.1	1.53 (s)	
30	19.4	1.77 (s)	31.0	1.43 (s)	
-					

^{*a*} Assignments may be interchanged.

488.3501; calcd for $C_{30}H_{48}O_5$, 488.3502; ¹H and ¹³C NMR, see Table 2.

Morolic acid: white amorphous powder (5.3 mg); EIMS m/z (rel int %) 456 (M⁺, 79), 410 (30), 248 (97), 236 (70), 207 (100), 189 (95); HREIMS m/z 456.3608, calcd for C₃₀H₄₈O₃, 456.3603; ¹³C NMR (C₅D₅N) δ 39.4 (1-C), 28.3 (2-C), 78.0 (3-C), 39.5 (4-C), 56.0 (5-C), 18.7 (6-C), 34.2 (7-C), 41.0 (8-C), 51.5 (9-C), 37.5 (10-C), 21.3 (11-C), 26.5 (12-C), 41.6 (13-C), 43.0 (14-C), 30.3 (15-C), 34.3 (16-C), 48.6 (17-C), 139.0 (18-C), 132.0 (19-C), 32.4 (20-C), 34.2 (21-C), 34.2 (22-C), 28.6 (23-C), 16.3 (24-C), 16.3 (25-C), 16.9 (26-C), 15.3 (27-C), 179.1 (28-C), 30.8 (29-C), 29.4 (30-C).

Acetylation of Morolic Acid. Morolic acid (2 mg) in 0.5 mL pyridine was treated with 0.5 mL of anhydrous acetic acid. After 24 h at room temperature, the reaction mixture was applied to Si gel column chromatography to obtain the monoacetate.⁸

Queretaroic acid:^{1,14,15} white amorphous powder (10 mg); mp > 300 °C; IR ν_{max} (KBr) cm⁻¹: 3400, 2950, 1695, 1460, 1030; EIMS *m/z* (rel int %) 472 (M⁺, 5), 264 (73), 234 (100), 207 (52), 187 (36); HREIMS *m/z* 472.3550, calcd for C₃₀H₄₈O₄, 472.3540; ¹³C NMR (C₅D₅N) δ 38.9 (1-C), 28.1 (2-C), 78.0 (3-C), 39.7* (4-C), 55.8 (5-C), 18.8 (6-C), 33.2 (7-C), 37.3* (8-C), 48.1 (9-C), 37.9 (10-C), 23.8 (11-C), 122.7 (12-C), 144.7 (13-C), 42.2 (14-C), 28.3 (15-C), 24.0 (16-C), 46.6 (17-C), 41.6 (18-C), 42.0 (19-C), 35.9 (20-C), 29.6 (21-C), 32.9 (22-C), 28.4 (23-C), 16.5 (24-C), 15.3 (25-C), 17.4 (26-C), 26.2 (27-C), 180.2 (28-C), 28.8 (29-C), 65.5 (30-C), (* may be interchanged).

27-Desoxyphillyrigenin:⁹ white amorphous powder (65 mg); HREIMS m/z 456.3610, calcd for C₃₀H₄₈O₃, 456.3603; ¹³C NMR (C₅D₅N) δ 39.3 (1-C), 28.3 (2-C), 78.1

(3-C), 39.5 (4-C), 55.9 (5-C), 18.6 (6-C), 34.3 (7-C), 40.8 (8-C), 50.9 (9-C), 37.4 (10-C), 21.2 (11-C), 25.4 (12-C), 43.2 (13-C), 41.3 (14-C), 27.7 (15-C), 28.1 (16-C), 42.2 (17-C), 48.3 (18-C), 42.4 (19-C), 83.9 (20-C), 27.3 (21-C), 32.2 (22-C), 28.6 (23-C), 16.3 (24-C), 16.5 (25-C), 15.9 (26-C), 14.3 (27-C), 176.6 (28-C), 18.6 (29-C), 24.1 (30-C); ¹H NMR (C₅D₅N) δ 0.96 (m), 1.66 (dt, J = 12.9, 3.4Hz) (1-CH₂), 1.86 (m) (2-CH₂), 3.45 (br t, J = 8.1 Hz) (3-CH), 0.78 (m) (5-CH), 1.35 (m), 1.52 (m) (6-CH₂), 1.34 (m) (7-CH₂), 1.31 (br s) (9-CH), 1.12 (m), 1.46 (m) (11-CH₂), 0.91 (m), 1.54 (m) (12-CH₂), 1.23 (m) (13-CH), 1.09 (m), 2.28 (dt, J = 13.1, 4.2 Hz) (15-CH₂), 1.19 (m), 2.01 $(ddd, J = 13.7, 4.3, 2.5 Hz) (16-CH_2), 1.04 (m) (18-CH),$ 1.58 (m) (19-CH), 1.50 (m), 1.79 (m) (21-CH₂), 1.49 (m) (22-CH₂), 1.22 (s) (23-CH₃), 1.02 (s) (24-CH₃), 0.82 (s) (25-CH₃), 0.90 (s) (26-CH₃), 0.89 (s) (27-CH₃), 0.87 (d, J = 6.9 Hz) (29-CH₃), 1.26 (s) (30-CH₃).

Treleasegenic acid:¹⁰ white amorphous powder (6 mg); IR $\nu_{\rm max}$ (KBr) cm⁻¹ 3450, 2950, 1700, 1460, 1260, 1120; EIMS *m*/*z* (rel int %) 488 (M⁺, 1), 470 (2), 442 (39), 424 (100), 393 (21), 234 (44), 216 (52), 190 (46); HREIMS m/z 488.3503, calcd for C₃₀H₄₈O₅, 488.3502; ¹³C NMR (C₅D₅N) & 38.9 (1-C), 28.1 (2-C), 78.1 (3-C), 39.4 (4-C), 55.8 (5-C), 18.8 (6-C), 33.3 (7-C), 39.7 (8-C), 48.1 (9-C), 37.4 (10-C), 23.8 (11-C), 123.2 (12-C), 143.9 (13-C), 42.2 (14-C), 28.4 (15-C), 25.1 (16-C), 48.7 (17-C), 41.4 (18-C), 43.0 (19-C), 40.6 (20-C), 74.0 (21-C), 42.1 (22-C), 28.7 (23-C), 16.5 (24-C), 15.5 (25-C), 17.5 (26-C), 26.1 (27-C), 179.3 (28-C), 25.2 (29-C), 64.3 (30-C); ¹H NMR (C_5D_5N) δ : 0.98 (m), 1.53 (m) (1-CH₂), 1.82 (m) (2-CH₂), 3.45 (dd, J = 9.9, 6.4 Hz) (3-CH), 0.89 (m) (5-CH), 1.35 (m), 1.55 (m) (6-CH₂), 1.32 (m), 1.45 (m) (7-CH₂), 1.70(t, J = 8.9 Hz) (9-CH), 1.85 (m), 1.92 (dd, J = 8.9, 3.1

Hz) $(11-CH_2)$, 5.57 (t-like, J = 3.1 Hz) (12-CH), 1.20 (m), 2.20 (m) (15-CH₂), 2.20 (m) (16-CH₂), 3.61 (t, J = 9.5Hz) (18-CH), 1.98 (t, J = 9.5 Hz) (19-CH₂), 4.22 (m) (21-CH), 2.46 (dd, J = 12.3, 4.7 Hz), 2.57 (dd, J = 12.7, 12.3 Hz) (22-CH₂), 1.24 (s) (23-CH₃), 1.02 (s) (24-CH₃), 0.88 (s) (25-CH₃), 1.02 (s) (26-CH₃), 1.32 (s) (27-CH₃), 1.59 (s) (29-CH₃), 4.20 (d, J = 10.7 Hz), 4.65 (d, J = 10.7 Hz) $(30-CH_2)$.

References and Notes

- (1) Kinoshita, K.; Koyama, K.; Takahashi, K.; Kondo, N.; Yuasa, H. J. Nat. Prod. 1992, 55, 953-955.
- Kinoshita, K.; Koyama, K.; Takahashi, K.; Kondo, N.; Yuasa, (2)H. J. Nat. Prod. 1995, 58, 1739-1744.
- (3) Takizawa, T.; Kinoshita, K.; Koyama, K.; Takahashi, K.; Kondo, N.; Yuasa, H. J. Nat. Prod. 1995, 58, 1913-1914.
- (4) Koyama, K.; Kinoshita, K.; Takahashi, K.; Kondo, N.; Yuasa, H. J. Nat. Prod. 1993, 56, 2201–2203.
- (5) Djerassi, C.; Lui, L. H.; Farkas, E.; Lippman, A. E.; Lemin, A.

- *Soc.* **1955**, *77*, 1200–1203. (6) Djerassi, C.; Farkas E.; Lui, L. H.; Thomas, G. H. *J. Am. Chem.* Soc. 1955, 77, 5330-5336.
- (7) Marx, M.; Leckereq, J.; Tursch, B.; Djirassi, C. J. Org. Chem. 1955, 32, 3150–3155.
 (8) Gonzáez, A. G.; Fraga, B. M.; Gonzáez, P.; Hernandez, M. G.; Ravelo, A. G. Phytochemistry 1981, 20, 1919–1921.
 (9) Environmenton S. C.: Lofferiase P. Phytochemistry 1988, 27 543–
- Errington, S. G.; Jefferies, P. R. Phytochemistry 1988, 27, 543-(9) 545.
- (10) Djerassi, C.; Mills J. S. J. Am. Chem. Soc. 1958, 80, 1236-1243. (11) Siddqui, S.; Faizi, S.; Siddiqui, B. S.; Sultana, N. Phytochemistry
- 1989, 28, 2433-2438.
 (12) Pym, J. G.; Ray, J. E.; Smith, G. W.; Whitehead, E. V. Anal. Chem. 1975, 47, 1617-1622.
- (13) Dev, S.; Gupta, A. A.; Patwardhen, S. A. Handbook of Terpenoids, Triterpenoids; CRC Press: Boca Raton, FL, 1989; pp 37-41.
- (14) Djerassi, C.; Henry, J. A.; Lemin, A., Rios, T.; Thomas, G. H. J. Am. Chem. Soc. 1956, 78, 3783–3785.
- (15)Tori, K.; Seo, S.; Shimaoka, A.; Tomita, T. Tetrahedron Lett. **1974**, 48, 4227-4230.

NP970364D